$$
H(6,9,5)=\left[\begin{array}{ccc}
-8 & 0 & 0 \\
0 & -10 & 0 \\
0 & 0 & -12
\end{array}\right]
$$

- The principal minors of the Hessian at $\left(Q_{1}, Q_{2}, Q_{3}\right)=(6,9,5)$ are

$$
\left|H_{1}\right|=-8 \quad\left|H_{2}\right|=80 \quad\left|H_{3}\right|=-960
$$

- Therefore, the second derivative test tells us that
π has a local maximum at $(6,9,5)$
- So, the company's locally optimal production plan and profit is:

$$
Q_{1}=6, Q_{2}=9, Q_{3}=5 \quad \pi(6,9,5)=679
$$

3 Exercises
Problem 1. Supppose we have a company that manufactures two products that are sold in the same market. The company has a monopoly and may charge whatever prices it wishes. Let

$$
\begin{array}{lll}
R=\text { revenue } & Q_{1}=\text { quantity of product } 1 \text { produced and sold } & P_{1}=\text { unit price of product } 1 \\
C=\text { cost } & Q_{2}=\text { quantity of product } 2 \text { produced and sold } & P_{2}=\text { unit price of product } 2
\end{array}
$$

Assume that the demand of the two products depends on their prices as follows:

$$
\left.\begin{array}{l}
Q_{1}=40-2 P_{1}+P_{2} \\
Q_{2}=15+P_{1}-P_{2}
\end{array}\right\}
$$

In addition, assume the cost of production is $C=Q_{1}^{2}+Q_{1} Q_{2}+Q_{2}^{2}$. How much of each product should the company manufacture in order to maximize total profit?
Use demand curves to solve for P_{1}, P_{2} in terms of Q_{1}, Q_{2} :

$$
\left.\circledast: \begin{array}{rl}
-2 P_{1}+P_{2} & =Q_{1}-40 \\
P_{1}-P_{2} & =Q_{2}-15
\end{array}\right\} \Rightarrow\left[\begin{array}{cc}
-2 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]=\left[\begin{array}{l}
Q_{1}-40 \\
Q_{2}-15
\end{array}\right]
$$

Creamer's rule:

$$
P_{1}=\frac{\left|\begin{array}{cc}
Q_{1}-40 & 1 \\
Q_{2}-15 & -1
\end{array}\right|}{\left|\begin{array}{cc}
-2 & 1 \\
1 & -1
\end{array}\right|}=55-Q_{1}-Q_{2} \quad P_{2}=\frac{\left|\begin{array}{cc}
-2 & Q_{1}-40 \\
1 & Q_{2}-15
\end{array}\right|}{\left|\begin{array}{cc}
-2 & 1 \\
1 & -1
\end{array}\right|}=70-Q_{1}-2 Q_{2}
$$

$$
\begin{aligned}
& \Rightarrow \pi\left(Q_{1}, Q_{2}\right)=P_{1} Q_{1}+P_{2} Q_{2}-C \\
&=\left(55-Q_{1}-Q_{2}\right) Q_{1}+\left(70-Q_{1}-2 Q_{2}\right) Q_{2}-Q_{1}^{2}-Q_{1} Q_{2}-Q_{2}^{2} \\
&=55 Q_{1}-Q_{1}^{2}-Q_{1} Q_{2}+70 Q_{2}-Q_{1} Q_{2}-2 Q_{2}^{2}-Q_{1}^{2}-Q_{1} Q_{2}-Q_{2}^{2} \\
&=55 Q_{1}-2 Q_{1}^{2}+70 Q_{2}-3 Q_{2}^{2}-3 Q_{1} Q_{2} \\
& \frac{\partial \pi}{\partial Q_{1}}=55-4 Q_{1}-3 Q_{2} \quad \frac{\partial \pi}{\partial Q_{2}}=70-6 Q_{2}-3 Q_{1}
\end{aligned}
$$

CP: $\left.\left.\begin{array}{l}55-4 Q_{1}-3 Q_{2}=0 \\ 70-3 Q_{1}-6 Q_{2}=0\end{array}\right\} \Rightarrow \begin{array}{l}4 Q_{1}+3 Q_{2}=55 \\ 3 Q_{1}+6 Q_{2}=70\end{array}\right\} \underset{\uparrow}{\Rightarrow}\left(Q_{1}, Q_{2}\right)=\left(8, \frac{23}{3}\right)$

$$
H\left(\theta_{1}, \theta_{2}\right)=\left[\begin{array}{ll}
-4 & -3 \\
-3 & -6
\end{array}\right]
$$

By Creamer's rule, substitution, or calculator

Ind deriv test: $\quad H\left(8, \frac{23}{3}\right)=\left[\begin{array}{ll}-4 & -3 \\ -3 & -6\end{array}\right] \quad\left|H_{1}\right|=-4 \quad\left|H_{2}\right|=15$
$\Rightarrow\left(8, \frac{23}{3}\right)$ is a local max

Locally optimal production plan:

$$
\begin{aligned}
& Q_{1}=8 \\
& Q_{2}=\frac{23}{3}
\end{aligned}
$$

Locally optimal profit: $\pi\left(8, \frac{23}{3}\right) \approx 488.33$

